## Possibilities

| *FL201-D4-W | *FL201-D4-G | *FL201-D6-W | *FL201-D6-G |
| :--- | :--- | :--- | :--- |
| *FL201-DW4-W | *FL201-DW4-G | *FL201-DW6-W | *FL201-DW6-G |
| *FL202-D4-W | *FL202-D4-G | *FL202-D6-W | *FL202-D6-G |
| *FL202-DW4-W | *FL202-DW4-G | *FL202-DW6-W | *FL202-DW6-G |
| *FL203-D4-W | *FL203-D4-G | *FL203-D6-W | *FL203-D6-G |
| *FL203-DW4-W | *FL203-DW4-G | *FL203-DW6-W | *FL203-DW6-G |

## Explanation of the product codes

Example: FL201-DW4-W = FLA -B C-D
$A=$ Distance between the LEDs
$B=$ Analog/Digital + without/with wires
$C=$ Number of light points
$D=$ Light color

## Stap 1: Measure the distance between the 2 LEDs = A

*Duo (red and white next to each other) $\quad>A=201$
*2.4mm $>\mathrm{A}=202$
*3.2mm $>\mathrm{A}=203$

## Step 2: Choose Analog/Digital + without/with wires = B

| *Analog without wires | $>$ coming soon |
| :--- | :--- |
| *Analog with wires | $>$ coming soon |
| *Digital without wires | $>B=D$ |
| *Digital with wires | $>B=D W$ |

## Step 3: Count the light points = C

```
*2 light points
    \(>C=4\)
*3 light points \(=A\)-form
\(>C=6\)
```


## Step 4: Choose the light color = C

*Sunny White

$$
>C=W
$$

Brighter white-yellow light, like fluorescent light color, usually locomotives from 1970 to present.
*Golden White

```
>C=G
```

More yellow-white, like incandescent light color, usually locomotives from 1835 to 1990.

Step 5: Choose the corresponding product

